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ABSTRACT

Understandinghe interaction betwedniophysicalprocesses is essentialdetermininghow the
environment-affects transport and survighfishes.We examined ertical distributio in larval
Atlantic menhadenBrevoortia tyrannus) andAtlantic croaker(Micropogonias undulatus) using
126 depth stratified towia Delaware BayUSA, during two cruises, in December 2007 and
February 2008 lnhaden larvae wefd.8-24.6 and 20.5-26.2 mm standard lemgthecember
and February.:Corresponding lengths for croaker were 9.3-17.9 and 8r&+hA&sing
empirical observationand statistically derived models, we explored larval concentration
both species as a functionlotation depth, diel period, tidalgriod size and pairwise
interactions Menhaden concentration was best modeled as a functgtatiin cruise and
interactions"between depth and size as well as between statloruise No significant
differencestintlarval menhaden concentrati@re preserdmong tidal andliel periods Croaker
concentration was best modeled as a function of size and interactions betweestadiieh
period, depth and sizejuiseand sizeDespitetidal periodnotemergingas a significant model
parameterywe observedargercroakerarvae during nighttime flood tide®ur statistical models
are consistent with processes ofagtuary transport fdsoth species, suggesting larvae are
increasingly“affectetdy behavioral responses as larvae grow, exhibdirapger patterns in
vertical distribution. The results refine our understanding of the potential importanae-of si
related differences in vertical distribution for larval transport in these species. Future research
should examine, the interactions amame-specific vertical migraty capabilites, vertical

distribution, transport, and retention.

KEY WORDS:

Distributionttransport Delaware Baycroaker, menhaden, larvae, ingrdish
INTRODUCTION

Vertical distribution impacts survival during the larval stay@ annualecruitment variability
by regulating encounters with prey goedatorsas well ady influencing the speed and
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directionof larval transport (Fikseet al., 2007 Miller, 2007, Hurstet al., 2009). Larval and
juvenile fishes exhibit a range of patterns in vertical distribution in the mamvieonment,
depending upon their behavior and abiotic factors such as hydrodynamics (Heatlgal2@@s,
2004). Many species exhibit migratory behaviors, wiaiffact transportrbm spawning grounds
to nursery Bbitats (Kendaland Naplin, 1981; Lyczkowski-Shultz and Steen, 1&#Hhates,
2004). Howeveractivity patterns vary across taxa, ontogenetic stagetalong spatial and
temporalenvironmentagradients; all of whickaffectverticaldistribution and horizontal
transport (Barnettt al., 1984;Leis, 1991 Heath, 1992; Lough and Potter, 1993; Gray, 1998
Loveet al; 2009; Lozan@nd Houde, 2013). Our understandingeiftical migratorybehaviors
andcapabilitiesjimmaiine fish larvae at the speciaadontogenetic staglevel, anddifferences
with location as they relate to transport dynamics is much less extethsineur understanding
of thecirculation dynamics between estuaries and adjacent coastal areas{Elurgb09 Leis
2010).Determining how marine fish larvae arertically distributed is critical to understanding
transport dynamics inf@and within estuarinewursery areas as well as assestiegmpactsof
transport engsurvival

AtlantieemenhadenBrevoortia tyrannus; hereafter menhadeapd Atlanticcroaker
(Micropogenias undulatus; hereafter croakegre of significant commercial interesgcupy
important.nichesn coastal marine food weband spawn over a broad geographic range along
the continental shetif the Northwestern Atlantic Oce@Norcrossand Austin, 1986Barbieriet
al., 1994; NOAA 2012). Menhaden begpawring in the early faland migratesouttwardas
the fall andwinter acance(Bourne and Govoni, 1988vith peaksn spawning occurring in fall
into earlywinter intheMiddle Atlantic Bight MAB) (Light andAble, 2003). Croaker spawn
during autumn in th&1AB from Cape May, New Jersetp Cape Hatteras, North Carolina
Concentrations of spawning adults occur on the continentalislibE southern part of the
MAB where water temperatures stay above 16°C (NoremdAustin, 1988). Spawninglso
occurs in estuaries from AuguSeptember, however, as autumn progressaesripg adults
move into.deeper shelf watessekingpreferable water temperatures to spawn (Barbieii.,
1994) and everwinter (Thorrokt al., 1997). The appearance of early stage croaker and
menhaden in Delaware Bay during winter months igekaltof transport by offshore and
neashore currents duringpis critical period of peak ingress into estuaries alongA®
(Schieleret al. 2014).
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Larval menhadehave been reported &xhibitdiel vertical migrabn affecing potential
horizontaltransport processe&ovoni and Hoss (2001) found swimbladder development in
menhaden occurs 12 days posthatch when larvae are approximately 8 mm in length (fjptochord
requiring larvae_to migrate to surface watémsrwardet al., (1999)reportedthat inermediate
sized larvae(27 mm TL) continued diel vertical migration as they develap®tlingressed
into Beaufort InletNorth Carolina. However, another study found no diel periodicity in the
vertical'distribution of menhadeaver the continental shedf North Carolina (Govoni and
Pietrafesa; 1994 pimilarly, more recent studies have also demonstrated a lack of consistent
vertical distribuion patterns in menhaden larvae (Lozano and Houde, 2013) suggesting that
processes.other than vertical migratory behaaoe important to estuarine ingrepsocesses
such as wind driven flux (HettlemdHare, 1998; Joyeux, 2001; Valle-Levinsaral., 2001;
Hareet al., 2005; Lozan@and Houde, 2013; Schieleral. 2014), and residual bottom layer
inflow (Weinstein, 1980Hareet al., 2005; Lozano and Houde, 2013

Larval croaker have been reported to occupy distinct depths as afemitthgenetically
changing yertical migratory behaviofdomyns and Lyczowski-Shultz (2004) found that croaker
larvae smallerthan 6 mm standard length (SL) showed a distinct pattern of vertical distribution
in the Gulfof Mexico. Most larvae (86 %)6<mm SL were at the deepest inshore depthd 612
m) during-night. Lower concentrations of larger larvae (mean = 6.0 - 6.7 mm SL) occurred in
shallower water + 11 m deep, and most were 1 m below the surface during Hiyietet al .,
(2005)suggestedroakeringress into Chesapeake Bay resuftedh behaviorally commolled
vertical pasition cevarying with the tidally dominated flow field and passiveagtuary
movement'during periods of net egtuary wateflow. In that study, maker were reporteit
utilize three mechanisms of ingress including wind forcing, residual bottom kdigwv,iand
tidal forcing with a steady increasethe use of tidal forcin@selective tidal stream transpoaty
larval development proceed@dareet al. 2005).

Despite.a growing body of knowledge concerning biophysgicadesseaffectinglarval
fish ingress«(€.cChurchill et al. 1999; Jager and Mulder 1999; Joyeux, 1999; Rowe and
Epifanio, 1999Hareet al., 2005 Schieleret al. 2014; Teodsioet al., 2016), an understanding
of the interaction between physical and biologieakdrs impacting transpartmains poorly
understood (Tedissio et al., 2016).Indeed, mechanisms impacting transpeduire critical

evaluation (Lozano and Houde, 2013) to determine how these processes affect delivery into
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estuarine nursery areas for thepecieghrougha range of sizes armubtentialbehavioral
capabilities Previous studies have udbe flux of larvae resulting fromind forcing, residual
bottomlayerinflow and tidal forcing (e.g. Haret al. 2005) or correlations with episodic
ervironmental phenomena (e.g. Schiadeal. 2014) to suggest potential modes of ingress.
However, ne.previous studies have devebtbgmpirically derivegdspeciesspecifi generalized
linearmodels of ingress. Developistatisticallybasedmodels of larval concentration based on
in situ collections would help us understamolv processeaffectingtransport may be acting on
aggregationsof larval fish, thereby providimgportunities to explicithexaminepreviously
suggested modes of ingress.

This:study was designed to examine Weetical distribution of larvainenhaden and
croaker at'the mouth of Delaware Bay during late fall and winter (2007-g9@8¥ess vertical
distribution and potentiapeciesspecifictransportmechanisms. Ourimary objective was to
derivespeciesspecific, statistically basedeneralized linear models of concentration as a
function of\physical parameters alagval size, as well apair-wiseinteractions among those
parametersollectedin situ, to modellarval menhaden and croak@ncentrationSpecifically,
we examined:how concentration varied as a function of cruise, station, depth withingdhe wat
column, diel period, tidal period, mean length andved-way interactions among those factors.
Our secodary objective was to use the derived models to better undepstanesses affecting
larval transporin these speciesonsideihow the parameters that significantly affected observed
concentration provide support for several potential modes of ingresgraube specific areas

for future research

METHODS

Sudy site

Delaware Bay.is a weakly stratified coastal plain estuary that ex#@@@skm from Trenton, NJ

down to the mouth at Cape May, NJ. The bay has a single channel, 45 m in depth that runs along
the longitudinal axis and extends onto the continental shelf (Janzen and Wong, 2002).
Circulation‘into. the estuary is variably dominated by wind and buoyancy with tywizddyer

estuarine circulation occurring in the absence of strong wiedtsvhat vertically mix the water
column (Epifanio and Garvine, 2001). Winds shift seasonally in direction from south to north
during the fall, andreshwater input generally declineseatingperiods of mixed conditions
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varying in intensityin the bay. North-northeasterly alongshore wind events can enhance across
shelf flow through Ekman transport (Epifar@od Garvine, 2001, Whitney and Garvine, 2005)
and along-estuar§northwesterlywind events camrive periods of enhanced @stuary btiom
layer flow by creating internal slopestimre kay (Janzemnd Wong, 2002, Wong arnvhle-
Levinson, 2002).
Field and [aboratory methods
Sampling was conducted at the mouth of Delaware Bay diwingruiseson the R/V Hugh R.
Sharp, 6-7'December 2007 andZBFebruary 2008t five stationscross the bay mouth and
six nearshoretations (Fig1). A CTD (conductivitytemperaturalepth) profile wagonducted
just prior taichthyoplankton collectioat each statiariFor each sampléow depthwas assigned
as bottorsl7and surface=2diel periodasdawrr1, day=2, dusk=3, and night4 with periods of
civil twilight used to characterize dusk and daw$NO, 2012) tidal period asebb =1 slack
=2 (prior to_ebb/floodl andflood =3 using predicted curreniata(NOBELTEC). Mean
temperature, salinity and density were calculated for surface and bottom samples after depth was
converteddrom pressure (UNESCO, 1983gan wind stress over each day for each cruise was
calculatedusing data from NOAA weather station LWS[Fig. 1).

Ichthyoplankton samples were collected using & Tueker trawl with 1 mm mesh.
Separaté-minuteoblique,surface(midpointto surfaceland bottom (bottorto midpoin) tows
were taken at each statiabove and below the midpoint of the water column if no pycnocline
was detected or above and below the pycnocline if one was detected. Each station veak sampl
on averagey2:5 timgs/- 0.13 SEM)during the Decembearuiseand 3.3 timeg+/- 0.24 SEM)
during theFebruarycruise.A total of 27 bottom and surface samples were colledteithg the
first cruise and 36 during tteeconccruise(126 depthdiscriminate samples in totaBamples
were washedrom the netsieved £ mm mesh)and preserved in 95% ethanai.the laboratory
the number.of menhaden and croaker, and mean length of a random subsample of 20 individuals
of each specigsvererecorded for eackample Volumeof water filteredwas calculated using
flow meter.data (Gener@ceanics Model 2030, standard rotor, Miami, Flgrval
concentratiomwascalculated aidividualsper1000 nf.
Satistical analyses
Larvalmenhaden and croaker concentration data were fourth root transformeto ptior

analysesto approximate aormal distributioramong station andepth strataAn automated
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approach using the ‘glmulti’ package (Calcagno 2013) wethegailzed linear nodek and the

‘glm’ function (R Development Core Team 2010) was appiestatistically modelarval
concentratn as a function dfignificantmaineffectsandpairwiseinteractionsamong cruse,
station, depth, diel periotidal periodand mean lengt{Calcagno and de Mazancourt 2010)
Mean length.was considered a quantitative covariate while the remaugraxplanatory

variables wereconsidered categoriédl candidate models were considered for each species (n
= 514,800)and ranked according to information criterion. The most parsimonious model for
each species'was selected ushmesmallsamplesizecorrectedAkaike Information Criteria

(AICc) and considered to best repredantal concentratiorafter an exhaustive screening
process (Caleagno and de Mazancourt 20Bdljedsample #tess wereused to examine
differencessin mealarval lengthfor each species between surface and bottom, as well as mean
water temperature, salinjtgnd density between surface and bottowsfor each cruiseising

SYSTAT Version 13.0Inference for all statistical analyses was made=a0.05.

RESULTS
Physical conditions differed by depth and between cruideantemperaturdp < 0.001) and
density p=.0.002)varied significantly by depth during tii@ecembecruise with lower
temperatures and densities in surface waters (Tapbauiti3alinity did not dfer significantly by
depth p = 0.733). During the Februatyuisehowever temperaturesalinity, and density all
differedsignificantly by deptiall p-values < 0.001With higher mean values in bottom waters
(Tablel). Winds were predominately out of the north for the duration dirsgtecruise,
primarily noerthknortheast on 6 December and north-northwest on 7 Decewifbereas \wds
were variablaeluring thesecond cruise, with northwest winds on 28 February and sastithea
winds on 29 Februaryr@ble?2).

Four factors were found to best model the concentration of larval menhaden. Based on
the corrected AIC (AICc = 447.16) and reduction in residual deviance of the model fit (280.66,
112 DF) relative to the null deviance of the intercept (330.50 on 116 DF), the best model to
explain transfermed menhaden concentration was:
Concentration ~ Cruise + Station + Depth*Size + Cruise*Statibrere * indicates interaction
Based on visual inspection, residuals of the model were normally distributed cdrigptre
predicted values, while the standard deviance of the residuals suggested theatittedomodel
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190 fit the data well. Statiorp(= 0.438), and the interaction between Depth and $ized(260) as
191 well asthe interactiorbetween Cruise and Statigm£ 0.06Q were not significant main effects
192 despite repramnting significant parameterstine final model. However, Cruisp € 0.001) was a
193 significant main_effect in the generalized linear moldnhaden concentratiofaried

194 significantly.between the two cruisgs< 0.001) with ayreatertransformednean concentration
195 observed during theeconccruise(3.62 individuals per 1000 ¥ncomparedo the first cruise

196 (2.18 individuals per 1000 $n Concentration did vary among stations with the highest mean
197 concentratioh"ebserveat Station 1(4.57 individuals per 10003 followed by Station 6 (3.81
198 individuals per 1000 fi) and Statiors (3.68 individuals per 10003jnMeanconcentration did
199 not substantially vary by depth, diel period, tidal period or size (Fig. 2).

200 No significant differences were detected in mesnyth of menhaden between depth
201 strata during the firsipp(= 0.479) or second cruisp £ 0.684). However, slightly larger

202 individuals weregenerally observed in surface watét8.5mm SL +£ 0.19 SEM) during both
203 cruises compared to bottom water3.@22nm SL +/ 0.20 SEM,; Fig. 3). The range ofean

204 menhademizehy stationduring the December cruise was 1681.3 mm SLin bottom waters
205 and 18.3 -24:6 mm Sih surface watersDuring the February cruismeanmenhadersize was
206 22.1 - 25:6.mn&L in bottom watersaind 20.5 - 26.2nm SLin surface waters

207 Fourfactors weralsofound tobest modethetransformedtoncentration of larval

208 croaker. Based on the corrected AIC (AICc = 340.73) and reduction in residual eevidhe
209 model fit (155.33 95 DF) relative to the null deviance of the intercept (222.20 on 99 DF), the
210 best modeltoexplain croaker concentration was:

211 Concentration~ i3e + Station*Diel Period + Depth*Size + Cruise*Size; where * indicates
212 interaction. Based on visual inspectidm standard deviance of the residuals suggested that the
213 predicted model fit the data well, while the residuals of the model were normally distributed
214 compared.to.the predicted values. All of the model parameters were found tgigoifacant
215 main effecswithin the generalized linear modecluding Size |§ < 0.001), the interaction

216 Dbetween Station and Diel Periqa£ 0.015), the interactiobetween Depth and Size£ 0.030),
217 andthe interaction between Cruise and Size 0.001) Greater concentrations weggically
218 observed with larger sizesr&ter mean concentrati¢d.19 individuals per 1000 $hwas

219 observed in the first cruiselative tothe secondruise(1.81 individuals per 1000y and in

220 bottom waterg2.69 individuals per 1000 ncompared tsurface water&2.11 individuals per
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1000 nf) duringboth cruisegFig. 4). Higher mean concentratigras observed during dawn and
night (2.51 individuals per 1000%ncompared to day and dusk (2.27 individuals per 100 m
The highest mean concentratioincroaker wasbserved at Stations 6 (3.36 individuals per 1000
m°), followed byStation 1(3.35 individuals per 1000 ¥nand $ation5 (2.87 individuals per
1000 nf). Mean concentratioby tidal stage did not vargreatlybetween flood (2.40 individuals
per 1000 m) and ebhides(2.43 individuals per 1000y however, both we greater than the
mean concentration observedring slack tidg1.89 individuals per 1000%Fig. 4). Further,
slightly largereroaker were present during flood ti(lEa7 mm SL +/- 0.33 SEM), compared to
ebb (12.3iImnSL +/- 0.32 SEM) and slack tides (10.1 mm &t 0.30 SEM).

Size ofreroakedifferedsignificantly between depth stratp € 0.007) duringhe first
cruise, whereas there was significant differenceetween depth stratp = 0.260) duringhe
second cruiséFig. 5). The range of meamoakerengths by station during tigecember cruise
was 10.1 - 17.9 mm SL in bottom waters and 9.3 - 16.4 mm Slurface water<During the
Februarycruise, mean croakéngth ranged from 9.4 - 17.7 mm #iLbottom watergnd 8.6 -

19.6 mmSlzinsurface waters

DISCUSSION
We ceveloped empirically derivegeneralized lineamodels of larval concentration in response
to a suite ofnteractingenvironmental parameters for both menhaden and croaker. Such models
have not been previoushyvailable for larval menhaden and croal&ased on tbse results, we
canrefinegurunderstanding of potential transport processes for both species that include
statisticallysignificant main effects and pawise interactions. Weuggest menhaden and
croakerarvaedisplay an increasing trend in the wdeor proficiency inactive vertical
migratory behaviorsvith anincrease in sizeover the range of 16.8 to 26.2 mm SL in menhaden
and 8.6 t0,19.6.mm SL in croaker. Further, we found evidence to suggest that larger menhaden
concentrated.in surface watedgspite being disrupted by seasonal mixing; whereas larger
croaker were'more frequently associated with bottom waters.

Formenhaden we found concentration varied as a functicnuiise and statigras well
as a interactionbetweerthose parameter®ur results suggest that larval menhasteatify by
sizewith larger individuals more frequently occurrimgsurface waterdHowever, larvaenay

becomemixedthroughoutthe water column, potentially relying ap-estuarytransportoy
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physical forcing mechanisms, including tidal, buoyancy and wind dpvecesseas a principal
means of ingresSSimilarly, based on modeled results of concentration, we found that croaker
larvae rely on periods of net up-estuary water movement created by physical forcing
mechanisms. However, unlike menhadsizealone and an interaction betweéati®nand diel
period were.also found to significantly affect modedembkerconcentrationThese results
suggest thaarger larvalcroaker, approximately greater than or equal to v SL, become
more reliant'onactive behavioral responses to the environmeratkiahmenhademanging in
size from 16:8-26.2 mm SL p8cifically larval croaker appear tmvancdgowardnocturnal flood
tide ransport as a means of ingress as they grow

While our analysis descritlzehow the physical environment aadval size affected
concentration of larval menhaden and croaker at daptivell as refineur understanding of
potential transport mechanispiiswas constrained bseverafactors Sampling was ovdwo
~50 hour cruises focused tre Delaware Bay moutine did not sampléurther offshore to
measure hydrodynamic mixing and subsequent vertical distributianvaf menhaden or
croaker,asshasibeen done bthers (e.gHare andGovoni, 2005). Offshore samples would have
been helpful infaddressing the issue of selective transport under stratifaiians and
variabilitysin transport processes with onshore migra#diihough we took olique towsover
the top and“bottorhalf of the water colummgiscrete depthsould not becomparegso our
interpretations of larval stratificatiomeresomewhat constraindzecause of a lack of high
vertical resolutionFinally, statistically assessing vertical distributions of planktonic larvae is
challenging'and may not describe the full range of conditions and behaviors fish aiifigesss
into estuaries-from coastal oceans (Pearre, 19&3pite tls, ourfield-based, speciespecific
models provide new insights into the dynamics of larval ingressarge, coastal plain estuaries
by thesetwo ecalogically and economically importasgecies

Based.on theoncertation of larvae at depth we identified key preegsmpacting larval
transport into.the estuary. We documented three main factors that affected larval concentration
shared by beth species including spatial and temporal variability, as well as the size of larvae.
Spatiotemporal variability in larval sulypwas likely generated by patterns in adult spawning
and variability associated with net transport from offshore spawning grounds (Qatialan
1999) as well aom seasonal mixingf watersat the bay mouth (Epifanio and Garvine, 2001).
Additionally, our results demonstrate that both menhaden and croaker larvae irsreasing
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capability to stratify by depth witAnincrease in size. The interactive effect of degpttl sizan
larvaeranging from 16.8 to 26.2 mm SL in menhaden and from 8.6 to 19.6 mm SL in croaker
suggests that as ontogenetic development proeeetsvimming efficiencyincreass, so too

does theefficacy, of vertical migratory behaviors (Haateal. 2005;Teodbsio et al. 2016).

We suggest that theteraction among wind driven surface currents, buoyant freshwater
discharge,.and/strong tidal forcing disrupted vertical migratory behavior in menlackss |
particularlyforsmaller individuals, such that there wasbservable depth stratification bigld
period across'sizes. Similar studies for early life stages of species in other taxa (e.g. blue crab,
Callinectes sapidus) have documented a diel pattern in activity suggesting transport is reliant on
wind forcing and density driven flows into Delaware Bay (Biermetrad. 2016). Previous
studies on'menhaden suggest larvae engage in diel migratory behavior (e d.aHp$989;
Forwardet al., 1996, 1999). However, others have demonstrated a lack of diel periodicity
including Govoni and Pietrafesa (1994) in Onslow Bay, NC and a similarly designedcsthdy t
present work by Lozano and Houde (2013) in Chesapeake Bay. Given our resultssaad dne
of ingressywe suggessurface oriented vertical migratory behaviors are likely being disrupted by
strong verticalkmixing in surface waters. In the fall and winter when larvahatken are
ingressing«into estuaries along the MAB, winds shift, and blow from the northeastgoently
driving periods of intense dowmelling circulation with acrosshelf Ekman transport creating
pulses of subtidal flow into estuaries (Goodrthl., 1989, Garvine, 1991, Epifanio and
Garvine, 2001). Likewise, gravitational circulation driven by buoyant freshwater outflow
enhances acroshelf flows similar to dowawelling, near the mouths of large estuaries (Pape
and Garvine;x1982, Bourne and Govoni, 1988, Epifanio and Garvine, 2001) creating periods of
favorable lup-estuary larval transport. In addition, strong tidal currents intixcey of early life
stage fishes in the water column through advection and create transport mesatioism
estuaries during flooding tides (Okubo, 1973, Onishi, 1986, Zimmerman, 1986, Wolanski, 1986,
Wolanskiet.al., 1988, Chantt al., 2000). If menhaden larvae are behaviorally orienting toward
the surface:as suggested by Forwatral. (1996, 1999), and by the interaction between depth
and size observed in our study, they would likely become mixed and thus trachsptrie the
water in which they are entrained, successfully ingressing during periods of estuapy flow

and experiencing advection duridgwnestuary flow.
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We propose that behavioral processes, whose efficacy is a function of larval size, and
physcal transport processes are equally important to the estuaginess of croakewyith a
greater reliance on active behavioral strategies at larger sizes. Croaker, like menhaden rely upon
periods of net up-estuary water movement caused by wind, density and tidally drivetoflows
ingress into,estuaries. However, we observed higher concentrations of croaker larvae at larger
average sizes,during evening hours and on flood tides. These results suggestdbkéas cr
larvae develop;there is an increase in active behavioral processes, spegifivally towards
nocturnal floedtide transport as the principal mechanism of ingress intoiest&milarly,
Hareet al.|(2005) suggested croaker used wind forcing, residual bottom layer inflow and tidal
forcing to ingress into Chesapeake Bay, with an increasing reliance on tidal flargier $izes.
Further, Schieleet al. (2014) suggested larval croaker use vertical migrations f@stymary
transport and estuarine retention in Delaware lBesed on correlaths betweemightly
concentrationand time-lagged wind eventselfherHareet al. (2005)nor Schieleret al. (2014)
examined diel periodicity to compare with our study. However, the work of Schetféler
(2009) didsmdrlarval croaker were more abundant at the mouth of Chesapeake Bay during
nighttime cellections suggesting the possibilities of net avoidance, or diurnal vertical migration
as suggested by previous studies (Raynie and Shaw 1994; Joyeux 1998; Forwardkarsieyan
2001). Additionally, diel patterns in vertical distribution have been reported fdtesrtzavae in
the Gulf of Mexico, with higher concentrations and greater sizes observed avehaléepths
during night collections (Comyns and Lyczowski-Shultz, 2004), suggesting an ontogenetic
transition in“behavioral capability comparable to that hypothesized bybSieat al. (2016) and
observed insthis study.

In addition to identifying potentidtansport processes flarval menhaden and croaker,
we compared trends in ingress and size of larvaeur work tothose reporteg@reviouslyfor
these species.in the central MABhe occurrence of menhaden and croaker larvae during both
cruisesin the.current study confirms that both species belong to the winter seasamal gro
occurringfremOctober and April in Delaware Bay, as described by Rileiab (2015). Larval
menhaden have been reported to be abundant on the inshore region of the continental shelf of the
MAB from SeptembeNovember and areommon from Decembévlarch (AbleandFahay,
2010). Larval menhaden ingressing into Delaware Bay estuaries have historicdigl frean

December through May ranging in size from 10 — 20 mm TL (Wang and Kernehan, 1979); while
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a more recent study found mean length ranged from 21.6 — 27.1 mm SL (Sattakl2014)
from mid-November to mid@ecemberWe foundthatmenhaden were more abundant in late
February than in early Decembas waglescribed by Wang and Kernehan (193@y more
similar in size tQ thaize range reported by Schieétal. (2014). Larval croaker have been
collected at Little Sheepshead Creek, New Jersey from August to January with peak ingress
occurring fromSeptember to November in recent years (&deFahay, 2010). Similarly,
Miller et"al”(2003) found larval croaker ingress to occur as early as August in Delaware Bay
ranging in“sizefrom 28 mm TL.While Schielert al. (2014) found nightly mean length of
croaker ranged from 12.8 — 17.6 mm SL. Croakere more abundant in Decemlbiean
Februaryinourstudy ata sizerangesimilar to those reported by Millet al. (2003) with a
mean length similar tavhat was reported b$chieleret al. (2014)during the first cruis€13.0
mm SL +/ 0.32). However, mean length during the second cruise (h.&L+/- 0.30SEM)
was slightly less than the range of nightly mean lengths observed by Setatl¢2014).
Our.analysis provides new assessmentlobw physical and biological processes
potentiallyinteract to impact estuarine ingress of larval menhaden and cr@akeesults
suggest that behavioral responses occur within nested environmental, speces spetific
levels to affectoncentrationvertical distributionand transport. Speciesad sizespecific
differencessin vertical distributiomdicatehow transporis dependent upon the interaction
between environmental conditions and behavioral responses. Specifically, we fduhdubka
of behavioral mechanisms affecting-egtuary movements becomasreasingly more important
as larvae growyover sizes ranging from 16.8 to 26.2 mm SL in menhaden and from 8.6 to 19.6
mm SL in ereakerOur workprovidesa perspective for considering transport processes in a
guantitative frameworky developing statistically significant methods for modeling larval
concentrationFuture researcan these speciehould be directed at exploritige size- specific
behavioral responses to environmentaiablessuggested her@) greaterdetail throughfield-
basedbbservationsincorporation othese interactions into models of larval abundauch as
developed.here would further advance our understanding of larval menhaden and croaker
transport inta.estuariemd their retention therein.
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Table 1. Mean temperaturealinity, and density for surface and bottom water dubegembel007(Cruise 1)and February 2008

(Cruise 2) Means withanasterisk indicate a significatt = 0.05) pairwise differencéetween surface and bottom valwathin each
cruise

Surface Bottom

Temperature Salinity Density Temperature Salinity Density
Cruise Parameter (°C) (kg per m-3) (°C) (kg per m-3)
Cruise 1 Average 6.54 28.56 1022.39 7.03 28.76 1023.08
Cruise 1 Stdev 1.02 1.04 0.86 1.21 3.40 0.30
Cruise 1 SEM 0.21 0.21 0.18 0.25 0.71 0.06
Cruise 2 Average 3.9 24.6% 1019.58 453 27.0& 1021.48
Cruise 2 Stcev 0.45 2.44 1.93 0.59 1.97 1.54
Cruise 2 SEM 0.07 0.39 0.31 0.09 0.32 0.25

Table 2. Meaneast and north components of wind stress (&hgm) NOAA weather station LWSD1 at Lewes, [@dEring the
December 2007 and February 2008 cruibt=ans were calculated feachday. The oceanographic convention is used whereby
negative north is toward the south and negativeigtsvardthe west

East North General wind field

Cruise 1
12/6/2007 -1.130 -3.468 NNE
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12/7/2007 1.401 -3.209 NNW

Cruise 2
2/28/2008 7.010 -5.750 NW
2/29/2009 -0.998 1.576 SE
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Figure Legends
Figure 1. Study area imWwer Delaware Baywith an inset of the Middle Atlantic Bight
Individual ichthyoplankton sampling stations are marked with a black circlBl@Ad\ weather

station LWSD1 is showwith a blue circle

Figure 2.Cencentration (4 Root Transforrad) of Atlantic menhaden (black dots) with the
optimal'generalized linear model of concentration (red line), and the stamdasdaé the fitted

model (dashed blue lines).

Figure 3. Sandard length (mm) of Atlantic@emhaden by cruise and depth at the mouth of

Delaware BayCruise loccurredin December 2007 and Cruise 2 in February 2008.
Figure 4 Concentration (4 Root Transforrad) of Atlantic croaker (black dots) with the optimal
generalized linear model of concentration (red line), and the standardcrioesitted model

(dashed blueslines).

Figure 5."Standard length (mm) Aflantic aroaker by cruise and depth at the mouth of Delaware
Bay. Cruise”bccurredin December 2007 and Cruise 2 in February 2008.
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